
WARPLab: A Flexible Framework for Rapid Physical Layer
Design

Narendra Anand, Ehsan Aryafar, and Edward W. Knightly
Rice University, Houston, TX, USA

{nanand, ehsan, knightly}@rice.edu ∗

ABSTRACT
In this paper, we present WARPLab, a framework for the rapid pro-
totyping and implementation of physical layer algorithms for wire-
less LANs. WARPLab is based on WARP, an FPGA-based, wire-
less experimental platform. We first give an overview of WARPLab
and then present an example of a physical layer algorithm that we
implemented on the framework for our work. We then discuss the
features, limitations, and future modifications as they pertain to our
research.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design- Wireless Communication

General Terms
Experimentation, Design

Keywords
WARPLab, Multi-User Beamforming, Wireless LAN

1. WARPLAB OVERVIEW
Rice University’s Wireless Open-Access Research Platform (or

WARP) [1] is a framework developed for the design and imple-
mentation of physical and network layer protocols. The hardware,
as seen in Fig. 1, is comprised of a Xilinx Virtex-II FPGA with a
PowerPC processor connected to up to four interchangeable daugh-
ter cards including radio boards, ADC/DAC boards, and user I/O
boards.

New physical layer designs can be developed in the FPGA while
new network layer protocols can be developed in the PowerPC.
When these new designs are coupled with the radio daughter cards,
researchers are able to easily evaluate the performance of new wire-
less protocols in a real-time, over-the-air (OTA) environment.

WARPLab is an extension of this core idea that allows for a
researcher to more rapidly prototype and evaluate new physical
layer protocols by interfacing WARP nodes directly with MAT-
LAB. WARPLab allows for physical layer processing to be im-
plemented in MATLAB instead of in the FPGA itself, a far more

∗We would like to thank Rice University’s Center for Multimedia
Communication (CMC) Lab for their invaluable support with the
WARP platform.

Copyright is held by the author/owner(s).
S3’10, September 20, 2010, Chicago, Illinois, USA.
ACM 978-1-4503-0144-2/10/09.

Figure 1: WARP Node.

complex route. In addition to performing all baseband processing
in MATLAB, the researcher can also coordinate up to 16 WARP
nodes from the same host PC in order to easily perform complex,
multi-node, OTA experiments. The resulting experimental system’s
overall topology would be as shown in Fig. 2.

Figure 2: WARPLab experimental topology.

1.1 WARPLab Design Flow
In a WARPLab system, each node’s FPGA consists of four large

buffers (one per antenna) that each hold 214 samples. The Pow-
erPC on the FPGA is used to facilitate the communication between
MATLAB and the FPGA buffers by transferring data between the
host PC and the buffers along with handling control signals that
instruct the node to transmit or receive (along with setting other

53



Figure 3: WARPLab design flow.

configuration parameters). The complete design flow is as shown
in Fig. 3.

One WARPLab experiment cycle is as follows:

1. Samples to transmit are generated in MATLAB.

2. Baseband processing of signal to be transmitted is per-
formed in MATLAB (i.e. the PHY layer protocol to be
tested is applied to the transmitting signal).

3. MATLAB downloads the processed signal to the buffers
on the transmitting WARP node over ethernet.

4. MATLAB sends the "Enable Transmit" and "Enable
Receive" control packets to the appropriate WARP nodes
to prime the nodes for an OTA transmission.

5. MATLAB then transmits a "Sync" packet to all of the
transmitting and receiving nodes simultaneously.

6. Once the nodes receive this "Sync" packet, the trans-
mitting node imeadiately flushes its buffers through its
radios while the receiving nodes imeadiately loads its
buffers with data streamed in through its radios.

7. After the OTA transmission is complete, the receiving
WARP nodes upload the received signals along with
RSSI readings (if requested) to the host PC where the
resulting data is post-processed in MATLAB to take the
desired measurements.

2. PHYSICAL LAYER DESIGN EXAMPLE:
MULTI-USER BEAMFORMING

Multi-User Beamforming (MUBF) is a method of serving mul-
tiple users simultaneously from a single transmitter. Recent ad-
vances in hardware technology have finally allowed for the de-
sign and prototyping of such systems. In [2], we have thoroughly
and experimentally evaluated the performance of MUBF. The com-
plexity of implementing an appropriate system for the OTA eval-
uation of this protocol necessitated a research platform that al-
lowed for rapid prototyping of physical layer (PHY) algorithms
while still allowing for accurate OTA experimentation. For this
reason, we elected to use WARP. The WARP hardware coupled
with the WARPLab design flow allowed for us to implement and
experimentally evaluate MUBF in an accurate and timely man-
ner. In addition to being able implement complex PHY layer algo-
rithms in MATLAB, WARPLab’s ability to coordinate experiments
between multiple nodes from a single host PC made this frame-
work an even more desirable choice. This section describes how

WARPLab framework was used to perform the experimental eval-
uation described in [2].

2.1 Implementation
In [2], we used WARPLab to experimentally evaluate MUBF

and constructed an experimental cycle based on the list above. Our
experimental topology is as shown in Fig. 4 where the connection
through the host PC serves as the feedback link.

User 1 

User 2 

User K 

Feedback Link 

Base Station 

Figure 4: Experimental setup.

Because MUBF requires channel information (through the feed-
back link) to properly steer simultaneous beams toward the in-
tended receivers, two WARPLab transmission cycles are required
to perform one experimental iteration. First, training data is trans-
mitted to all of the receiving nodes who then report the received
signals back to the host PC. Then, the channel matrix is computed,
the beam weights are calculated and then used to phase twist the
data streams towards the intended receivers. (A more in depth dis-
cussion of this process can be found in [2].) This measurement
process raises an obvious concern–the key WARPLab tradeoff.

54



2.2 Limitations: The WARPLab Tradeoff
Because of the added latency of communication between the host

PC and each of the WARP nodes, the experimental setup is not real
time. Specifically, the time between the calculation of the chan-
nel estimate and the use of this estimate for beamforming (˜60 ms)
could result in an outdated channel estimate due to rapidly varying
channels. This is why, in [2], OTA experiments had to be performed
in stable environments and any channel variation-type experiments
had to be performed with a channel emulator. WARPLab allowed
us to implement the baseband processing in MATLAB more effi-
ciently than if we were to do so in an FPGA with the downside of
a non-real time system.

2.3 Future Work
For future work, we would like to leverage the complete node

management and control of WARPLab while introducing modifi-

cations to the FPGA design to create a more real time system. We
are currently working on shifting more of the baseband processing
from MATLAB to the FPGA so that this complete measurement
cycle can run in real time (i.e. the latency between channel estimate
and beamformed data transmission more closely resembles that of
a real wireless card).

3. REFERENCES
[1] Rice University WARP project. Available at:

http://warp.rice.edu.
[2] E. Aryafar, N. Anand, T. Salonidis, and E. Knightly. Design

and experimental evaluation of multi-user beamforming in
wireless LANs. In Proceedings of ACM MobiCom, September
2010.

55


